Southern Sky Watch

July Skies

Sorry this is late, I've been off sick. Southern Skywatch has been online for 16 years; yes, the competition will happen, eventually.

Useful info for visitors from New Zealand, South Africa and South America.

July 1; Moon at Apogee. July 4; Ceres and Vesta close. July 4; Earth at Aphelion. July 6; Moon close to Mars and Spica. July 8; Moon close to Saturn. July 13, Moon at Perigee. July 13-14; Mars close to Spica. July 16; Venus and Mercury at their closest. July 25; crescent Moon close to Venus. July 26; crescent Moon close to Mercury.

Looking up at the stars is still a rewarding pursuit, despite the increasing light pollution in our major cities. The southern sky is full of interesting objects, many of which go unseen in the northern hemisphere. All you need for a good nights viewing is yourself, a good idea of where south and east are, and your hands. Optional extras are a small pair of binoculars, a torch with red cellophane taped over the business end and a note book. A great many tips for backyard astronomy may be found here, although many of them are more relevant to the northern hemisphere. A general article on amateur astronomy from New Scientist is here (May require subscription otherwise see the TASS site.).

This page is designed to give people a simple guide to the naked eye sky. In the descriptions of planet and star positions, distances in the sky are given as "fingers width" and "hand span". This is the width of your hand (with all the fingers together as in making a "stop" sign, not bunched as a fist) or finger when extended a full arms length from you.

[updatedAstroblog Updated astronews and images at Astroblog!] [Weekly Sky ] [Astronomy Media Player] [Aurora Alert! Updated 26/2/14] [Coming events and Updates updated updated for 2014] [Out in Space ] [ The Moon] [Planets] [Meteors] [ Comets] [ Occultations ] [Eclipse] [Variable Stars ] [Stars] [Star Maps] [Using the Maps] [Iridium Flares and the International Space Station pass predictions (via Heavens Above)] [Links ] [updatedCharts, Books and Software for Astronomy] [Celestia scripts and add-ons Gliese 581 [Previous Months] [Feedback] [Ian's Astrophotography gallery Animation of Jupiter] [Email alert service] [Images of past aurora]

Clear crisp Winter nights are often the best for star gazing, with the broad sweep of the Milky Way arching across the sky. However, it gets very cold, so don't forget to rug up before doing any extended star watching. Dew formation can also mean some dampness, so a blanket or rug to sit on is a good idea, as well as a thermos of your favorite hot beverage. Winter sees our night skies dominated by the Southern Cross, sprawling Scorpio and Sagittarius, in which the heart of our galaxy hides, so it's well worth stepping out into the chill for an astronomical thrill.

While these pages are primarily intended for the use of people observing in Australia, non-Australian Southern Hemisphere observers will find most of the information here applies to them. The star information will be most helpful, when you correct your location for latitude (see the Stars section for appropriate location information). Most Moon phase, planet, comet and asteroid information will be very similar to what will be seen in New Zealand, South Africa and South America. Countries close to the equator (eg Indonesia) will have somewhat different southern and northern views, but the eastern and western views should be similar enough to get a good idea of what is going on.

Occultations, eclipses and aurora are highly location dependent, and it would be best to get a local almanac for these events. If there is no local almanac available, email me and I might be able to help you. I do try and give general info for occultations and eclipses in the Oceania area of the Southern Hemisphere.

Return to Menu

Aurora Alert UPDATED 26/02/14: There was a very good auroral event on 22 February, seen in NSW, Victoria, SA and WA as well as Tasmania. Last year, a coronal mass ejection from an M class flare hit us square on on March 17 2013. Aurora were detected as far north as the QLD border, with some really nice events in Tasmania, and here are some images from that event. The Sun is now at solar maximum, but has been rather disappointing so far apart from the odd event like the 17 March one and the unexpected 22 February one. We may see more aurora in the near future.

Auroral images and descriptions from past geomagnetic storms are now at the auroral image web page.

We are now at solar maximum in 2014, and we can hope to see an increasing frequency of aurora, although it has been generally disappointing with some exceptions. Tasmania, King Island and Southern Victoria are the most likely places to see aurora. However, on August 24, 2005 there was a massive auroral storm seen as far as northern NSW (and the 22 February one this year was seen as far north as southern NSW). Naturally, the best views of any aurora will be away from the city and bright lights. Aurora occur when charged particles from the solar wind enter Earths outer atmosphere and interact with the oxygen and nitrogen atoms producing eerie displays of coloured lights. During solar maximum, which occurs every 11 years, the number and speed of the particles are higher, allowing them to penetrate the Earth's magnetic field at lower latitudes than normal. Observers in Tasmania are likely to see green glows or sheets of light in the southern sky. Observers in Southern Victoria are more likely to see a red glow in the southern sky, although more spectacular displays are possible.

The Astronomical Society of Tasmania has a webpage devoted to this phenomenon. The Australian IPS radio and space services covers Aurora and related phenomena in very great detail (too much if you don't know much about them) but has a nice education page. Flinders Uni also has real time magnetometer readings, however, this will probably not mean much to most people.

Aurora will generally follow solar flares by about 2 days, and a number of instruments are watching the sun for these outbursts. The solar minimum occurred in 2006 and persisted for some time. While sunspot numbers, and hence flare rates are increasing, sometimes months will go by without an alert, then you have three in a week. The space weather site at gives notice of when solar winds likely to cause aurora will arrive. Alternatively, send an email to with "subscribe aurora alert" as the subject and I will send you an email alert of any likely auroral event (or other interesting sky phenomena). However, even a strong solar flare is no guarantee that you will be able to see aurora, but it does increase the probability. Still more alternatively, there are the facebook pages Aurora Australis Tasmania, Aurora Australis Tasmania NOW! and Aurora Australis all do discussions and alerts.

Return to Menu

Email alerts I try to update this page fairly regularly outside of the monthly postings. However sometimes things happen which I can't get in fast enough, or you forget to mark your calendar. If you would like to be alerted to or reminded of interesting astronomical or sky phenomena, send an email to with "subscribe aurora alert" as the subject. This is the old aurora alert list, but with auroras rare as we climb out solar minimum (except for the occasional humdinger, like the August 2005 auroral event), it is doing double duty. Astroblog will have images when possible of these events soon after.

Return to Menu

Coming events

6 January 2014; Jupiter at opposition

15 January 2014; Moon Near Jupiter

23 January 2014; Moon Near Mars

26 January 2014; Moon Near Saturn

29 January 2014; Moon Near Venus

11 February 2014; Moon Near Jupiter

19 February 2014; Moon Near Mars

22 February 2014; Moon Near Saturn

22 February 2014; Ocultation of Saturn

26 February 2014; Moon Near Venus

28 February 2014; Moon Near Mercury

10 March 2014; Moon close to Jupiter

18 March 2014; Moon close to Mars

20-21 March 2014; Moon close to Saturn

27-28 March 2014; Moon close to Venus

29 March 2014; Moon close to Mercury

7 April 2014; Moon close to Jupiter

9 April 2014; Mars at opposition

14 April 2014; Moon close to Mars

15 April 2014; Total Lunar Eclipse

17 April 2014; Moon close to Saturn

26 April 2014; Moon close to Venus

29 April 2014; Annular eclipse of the Sun

4 May 2014; Moon and Jupiter close together.

7 May 2014; Eta Aquariid meter shower.

11 May 2014; Moon and Mars close together.

11 May 2014; Opposition of Saturn.

14 May 2014; Moon and Saturn close.

14 May 2014; Occultation of Saturn.

26 May 2014; Moon close to Venus

1 June 2014; Crescent Moon and Jupiter close together.

7-8 June 2014; Moon and Mars close together.

10 June 2014; Moon and Saturn close.

25 June 2014; Crescent Moon and Venus close.

26 June 2014; Crescent Moon near Mercury.

29 June 2014; Crescent Moon near Jupiter.

6 July 2014; Moon, Spica and Mars close.

8 July 2014; Moon and Saturn close.

13 July 2014; Mars and star Spica closest.

24 July 2014; Venus and crescent Moon close.

25 July 2014; Mercury and crescent Moon close.

3 August 2014; Mars and waxing Moon close.

4 August 2014; Occultation of Saturn by Moon.

18 August 2014; Venus and Jupiter close.

24 August 2014; Venus and crescent Moon close.

25 August 2014; Mars and Saturn close.

27 August 2014; Mercury and crescent Moon close.

31 August 2014; Saturn and Moon close.

September: Comets C/2012 K1 PanSTARRS and C/2103 V5 Oukaimaden (just) visible to the unaided eye

1 September 2014; Moon close to Mars.

20 September 2014; Mercury and Spica close.

20-21 September 2014; Moon close to Jupiter.

26 September 2014; Crescent Moon close to Mercury and Spica.

28 September 2014; Moon and Saturn close.

29 September 2014; Moon and Mars close.

October: Comets C/2012 K1 PanSTARRS and C/2103 V5 Oukaimaden (just) visible to the unaided eye, comet C/2013 A1 Siding Spring comes close to Mars

8 October 2014; Total Eclipse of the Moon.

18 October 2014; Moon close to Jupiter.

22 October 2014; Orionid meteor shower.

28 October 2014; Mars close to crescent Moon.

15 November 2014; Moon close to Jupiter.

26 November 2014; Moon close to Mars.

17 November 2014; Leonid Meteor Shower.

11-12 December 2014; Moon close to Jupiter.

15 December 2014; Geminid Meteor shower.

20 December 2014; Crescent Moon close to Saturn.

23 December 2014; Crescent Moon close to Venus and Mercury.

Out in Space

Cassini sees Titan's polar vortex.

Mars Curiosity Rover drills holes in rocks.

Mars Express sees cascading dunes.

The Mars Reconaissance Orbiter finds a brand new crater on Mars.

Return to Menu

The Moon:

Current Phase of the Moon.
This is a JavaScript applet kindly supplied by Darren Osbourne. It shows the Moon as Southern Hemisphere viewers see it, and is upside down from the Northern Hemisphere perspective.

C| First quarter on the 5th

O Full moon on the 12th
D Last quarter on the 19th
O New Moon is on the 27th

July 1; Moon at Apogee. July 6; Moon close to Mars and Spica. July 8; Moon close to Saturn. July 13, Moon at Perigee. July 25; crescent Moon close to Venus. July 26; crescent Moon close to Mercury.

An interactive calendar of the Moon's phases.

A view of the phase of the Moon for any date from 1800 A.D. to 2199, US based, so that the Moon is upside down with respect to us. The image above is from this source.

The phases of the Moon have been linked in the popular imagination to activities as diverse as madness and menstruation. However, careful study has shown that there are no such links. This web page outlines how the Moon is unconnected with a wide range of human activities.

Return to Menu


Finding planets, even with the directions below, can sometimes be difficult if you are unfamiliar with the sky. However, the Moon is very obvious, and can be a guide to location of planets. Not only that, the combination of the Moon and bright planet(s) is often very beautiful. Thus the guide below gives the dates when the planets and the Moon are close together.
morning sky, 6:00 am

The morning sky facing east in Melbourne on July 25 at 6:30 am AEST showing the the eastern horizon with Moon near Venus and Mercury. (similar views will be seen from other cities at the equivalent local time eg 5:00 am ACDST Adelaide.

evening sky, 10:00 pm

The evening sky facing north-west in Melbourne on July 6 at 10:00 pm AEST showing the Moon and Jupiter close together. (similar views will be seen from other cities at the equivalent local time eg 10:00 pm ACST Adelaide).

Mercury is in the morning sky this month. On the 1st, Mercury is difficult to see without a clear level horizon, but rapidly rises higher, heading towards Venus. Mercury is at its highest on the 13th. By the 15th, Mercury is just under a handspan from the eastern horizon, an hour before sunrise. Mercury and Venus are closest on the 16th. On the morning of July 26 the thin crescent Moon is a handspan above Mercury, but the pair are difficult to see in the twilight. By the 30th, Mercury is just under a handspan from the eastern horizon, half an hour before sunrise, and is difficult to see without a clear level horizon.

Venus is still prominent in early morning sky in July. In small telescopes it waxes in a "gibbous Moon" shape. On July 1 Venus is two handspans above the eastern horizon an hour before sunrise. Venus moves from Taurus into Gemini this month. Venus is approached by rapidly brightening Mercury early in the month. They are closest on the 16th. On July 15 Venus is just under one and a half handspans above the north-eastern horizon an hour before sunrise. On July 25 Venus is around a four fingerwidths from the crescent Moon. On the 30th Venus is just under a handspan above the eastern horizon an hour before sunrise.

Earth is at aphelion on Friday, 4 July. At this time the Earth is furthest from the Sun.

Mars is still prominent in the evening sky this month. Even though opposition was in April, this month is still reasonably good for observing Mars in a telescope. Red (well, sort of orange) Mars continues to move slowly through the constellation of Virgo this month, never far from the bright star Spica. On July 1 Mars is nearly six handspans above the western horizon at 10:00 pm local time. The Moon is close to Mars on the 6th. On the 13th and 14th Mars is just over a fingerwidth from Spica. By July 15th Mars is over 5 handspans above the western horizon at 10:00 pm local time. By the 30th, Mars is nearly five handspans above the western horizon at 10:00 pm local time.

Jupiter is low in twilight at the beginning of the month, then it is rapidly lost in the twilight. On July 1 Jupiter is just under a handspan above the western horizon an hour after sunset. On July 15 Jupiter is lost in the twilight.

This table was created using The Planets 2.02 a free program available from

Times are AEDST, subtract 30 minutes for ACDST and 3 hours for AWST.Subtract 1 hour for standard time.
GRS = Great Red Spot. S = Shadow Transit, T = Transit

Fri	4	Jul	17:29	GRS: Crosses Central Meridian
Mon	7	Jul	17:31	Io : Disappears into Occultation  S
Mon	7	Jul	17:57	Cal: Shadow Transit Ends	
Tue	8	Jul	17:24	Io : Shadow Transit Ends	
Sun	13	Jul	17:30	Gan: Reappears from Eclipse
Wed	16	Jul	17:28	GRS: Crosses Central Meridian

Saturn was at opposition (when it is biggest and brightest as seen from Earth) last month, but is still easily seen in the evening sky. Saturn is now easy to view in telescopes in the evening as it is reasonably high above the horizon after twilight. Saturn spends the month in Libra, forming a triangle with the two brightest stars of that constellation. On July 1 Saturn is just over ten handspans above the north-western horizon at 10:00 pm local time. On July 8 the Moon is close to Saturn. On July 15 Saturn is nearly 9 handspans above the north-western horizon at 10:00 pm local time. By July 30 Saturn is just over seven handspans above the western horizon at 10:00 pm local time.

Return to Menu

Iridium Flares, the International Space Station and other satellites

See this amazing site for images of the space station taken through a telescope.

Iridium flares add a bit of spectacle to the night sky. The Iridium satellite network was set up to give global phone coverage, so an Iridium satellite is almost always over head. Occasionally, one of the antenna of the satellites is aligned so that it reflects the sun towards an observer, giving a brilliant flare, often out-shining Venus. However, the visibility of Iridium flares is VERY dependent on observer position, so you need a prediction for your spot within about 30 km. Hence I'm referring you to a web site for predictions rather than doing it myself.

new See an Iridium Flare at your Location. Courtesy of Heavens above. Choose your location from the drop down box

Or type in Your Latitude and Longitude in decimal format eg Darwin is -12.461 130.840 , to find your Lat Long go to this site.
Latitude: Longitude: City Time Zone:

See the International Space Station at your Location. Courtesy of Heavens above. Choose your location from the drop down box

Or type in Your Latitude and Longitude in decimal format eg Darwin is -12.461 130.840 , to find your Lat Long go to this site.
Latitude: Longitude: City Time Zone:
Another site, JPASS, doesn't do Iridium flares, but is very cool and does the International Space Station, and many other satellites. However, although the output is flashy, it's harder to use than heavens above.

Return to Menu

Meteor showers:

Date        	Meteor Shower       ZHR  Illumination 
30/07/2014  delta-Aquarids      16    0.0      
28/07/2014  Piscis Australids    5    0.0      
30/07/2014  Capricornids         5    0.0         

The figure ZHR is zenithal hourly rate. This is the number of meteors that a single observer would see per hour if the shower's "point of origin", or radiant, were at the zenith and the sky were dark enough for 6.5-magnitude stars to be visible to the naked eye. Illumination gives an idea of how dark the sky is, the lower the figure, the darker the sky.

The delta-Aquarids will appear from 12 July to 23rd August peaking on July the 30th. At 10 pm, face east, and look 4 hand spans and two finger widths above the horizon. One finger width right is the 4th magnitude star delta d Aquarii. The radiant is just above this star, see the map for more detail. This meteor shower should be visible from 10.00 pm until dawn, with better meteor rates after midnight. These showers occur close to the Full Moon this year, so there will be no Moonlight interference. The other meteor showers are weak.

Outside of the showers, you can still see sporadic meteors. Rates seen from the Southern Hemisphere are around 11 random meteors being seen per hour during the late morning hours and 2-4 per hour during the evening. The evening rates will be reduced slightly during the times around the full Moon due to interference by the Moons light.

A good page describing meteor watching is at the Sky Publications site.

The Meteor Section of the Astronomical Society of Victoria has some good information on meteor watching too.

Learn how to take a meteor shower photograph.

A Cool Fact about meteor speeds

A good page on detecting meteors using home made radio-telescopes is here.

Return to Menu


There are currently no comets observable with the unaided eye. A list of current comet ephemerides is at the MPC.

Return to Menu


No interesting naked-eye occultations this month.



No significant eclipses this month.

Find local sunrise/sunset and twilight times for your city or location (courtesy of Heavens Above).
Use either the drop down box for the listed cities, or type in your latitude, longitude and city in the boxes below.

Type in Your Latitude and Longitude in decimal format eg -12.461 130.840 , to find your Lat Long go to this site.

Latitude: Longitude: City Time Zone:


Variable Stars:

While most stars seem to shine with a constant brightness, there are some that undergo regular, dramatic change in brightness. The classic variable Algol is currently unobservable.

morning sky, 2:00 am

Cetus at 2:00 am AEST on 15 July, Mira is indicated by the circle.

Mira (omicron ceti), a star in the constellation of Cetus the whale, is a long period pulsating red giant and changes brightness from below naked eye visibility to a peak of round magnitude 2 (roughly as bright as beta Crucis in the Southern Cross) in around 330 days. Mira peaked in brightness in late June, but is visible only in the morning skies. Mira may be seen above the eastern horizon at 2 am (see above diagram).

Return to Menu


evening sky, 10:00 pm

The southern evening sky at 10:00 pm AEDST in Melbourne on July 1 (similar views will be seen from other cities at the equivalent local time eg 10:00 pm ACDST Adelaide).

All descriptions here are based on the view from Melbourne at 10.00 pm AEDST (Australian Eastern Standard Time) on 1 July and assumes a fairly level horizon. Starset occurs progressively earlier each day, so these descriptions are valid for 9.00 pm on the 15th and 8.00pm on the 30th. Readers from other time zones should see roughly the same views at 10.00 pm local time. Corrections for cities other than Melbourne are given below.

How do I find east, west, north and south?

This is an ideal time to hunt the fainter open clusters in Scorpio with binoculars. Looking East and straight up, the distinctive "hook" shape of Scorpio, the scorpion, now stretches across the zenith. Going up about six handspans you will see six bright stars forming a T, with the tail of the "T" nearly parallel to the horizon and a curved "tail" of stars. The bright red giant star Antares (Alpha Scorpius, the middle star in the three stars forming the tail of the T) is quite prominent. The area around Scorpio is quite rewarding in binoculars, and there is a small but pretty globular cluster about one fingerwidth above and to the north of Antares (between Antares and the leading star of the tail of the T). It can be hard to see in city conditions. A high definition map of Scorpio is here.

Just below Scorpio and slightly to the right is the distinctive "teapot" shape of Sagittarius, the archer. The "teapots" spout is pointing straight up, and its lid points to the left. This constellation is now high enough in the sky for its panoply of clusters and nebula to reach full prominence. M24, an open cluster about two fingerwidths to the right and slightly down from the "lid" of the teapot should be visible to the naked eye, just above this and slightly to the left by about a hand span is a number of open clusters and a patch of luminosity that marks the lagoon nebula. M22, a globular cluster, is close to the lid (between and about a fingerwidths left of the two stars that make the bottom of the lid), should be visible as a dim, fuzzy star on a dark night. Between these clusters and the "lid" itself runs the Great Sagittarius Starcloud. The centre of our galaxy lies in Sagittarius, and on a dark night, the traceries of the Milky Way and its dust clouds are particularly beautiful. A high definition map of Sagittarius can be found here.

To the right of the teapot by about two fingerwidths, is the a delicate arc of stars, Corona Australis, the Southern Crown. Just below Sagittarius is the battered triangle of Capricorn, the Goat, and off to the left by about 4 handspans is three bright stars that mark Aquilla, the Eagle, with the brightest, white Altair, being in the center.

To the left of the "T" of Scorpio by one handspan and slightly higher is a broad triangle of stars that marks Libra, the balance. Alpha librae (with the amazing name Zubenelgenubi) is the brightest star and apex of the triangle pointed at Spica, is almost midway between Spica and Antares. This star is a wide binary, and those with good eye sight and dark skies can usual see both components. Beta Librae (Zubeneschamali) is the next brightezst star in the triangle and closest to the horizon. Four fingerwidths to the left of Beta Librae is delta librae, this dim star (magnitude 4.9) is an eclipsing variable, where a dim star orbiting a brighter star eclipses the brighter star, causing a fall in perceived brightness. Delta librae dims and brightens by one whole magnitude every 2.3 days, and is a good (if dim) naked eye variable. Libra also hosts the star HD 141569 (roughly a handspan below beta Librae, but at 7th magnitude invisible to the naked eye), which has a dust disk with dark lanes which may indicate planets.

To the left of Libra by around three handspans is bright white Spica, the brightest start in the constellation of Virgo. Spica marks the top right-hand corner of a rectangular group of stars that marks out the body of Virgo, the virgin.

Six handspans below Spica and three to the right is bright orange Arcturus, alpha star of the constellation of Bootes, the herdsman. Between Altair, Arcturus and Spica are a number of dim constellations, including Hercules. Hercules is almost mid way between Altair and Arcturus, and a reasonably prominent box shape marks the centre of the constellation.

Looking now to the right of Scorpio, about a handspan away from the curved tail is a small squarish constellation Ara, another handspan again brings you to the edge of the large, but dim, constellation of Pavo. Delta Pavonis, about another handspan away, is one of the handful of sun-like stars within 20 lightyears of Earth that might have terrestrial planets in its habitable zone.

Directly to the left of Virgo by four handspans is end of the long rambling constellation Hydra which starts below the western the horizon. Three handspans to the left is crater the cup with its distinct, but upside down, cup shape. Three handspans above and three to the left of Spica is the kite shape of Corvus the crow. About four handspans above Spica and about one to the right is M83, a galaxy which can easily be seen in small binoculars on a dark night.

Five handspans to left of and four down from Virgo, is Leo. The sickle of Leo is below the horizon and Regulus is just above the western horizon.

The battered rectangle of stars that forms Puppis, the poop deck of the former constellation Argo Navis, is just on the south-western horizon. Just above this is Vela, the sail of that same ship. When, Argo Navis was broken up into Puppis, Vela and Carina (the keel) in 1750, they forgot to assign alpha and beta stars to Vela, and it's brightest star is at magnitude 1.5 is Gamma Velorum. Gama Velorum is a double star which may be resolved in good binoculars. The Milky Way passes through Vela, and there are many open clusters which can be seen with binoculars or the naked eye. One of the best of these is NGC2547, a little below gamma Velorum. Vela is also home to the spectacular Gum nebula (which can only be seen in telescopic photographs), and the second pulsar to be observed optically. Kappa and delta Velorum, with iota and epsilon Carina, make the "false cross" (about 10 hand spans above the southern horizon). A high definition map of Vela is here.

To the left of Vela, is Carina (the keel). A high definition map of this region is here. Looking almost anywhere in the area stretching between Sagittarius and Vela/Carina will reveal an interesting cluster or star formation. However, the area two handspans below and slightly to the right of the Southern Cross, between it and the false cross, is particularly rich. Here you will find the "Southern Pleiades" surrounding the tail star (Theta Carina) of a prominent kite shaped group of stars in Carina. Smaller and less spectacular than their northern counterparts, they still look very nice in binoculars. Four fingerwidths to the left of the Southern Pleiades are two rich open clusters, and the barely visible star Eta Carina. Eta Carina's spectacular nebula is only dimly seen in binoculars. Five hand spans to the right of the Southern Cross is the False Cross, just below the False Cross is a good open cluster, just visible to the naked eye, and very nice in binoculars. One handspan to the left of the False Cross is another rich open cluster, again, very nice in binoculars. Canopus (alpha Carina) is a bright yellowish star two handspans from the south-western horizon.

Facing due South, one handspan to the right and twelve handspans up are Alpha and beta Centauri the so called "pointers", with Alpha being the yellow star which is closest to the horizon, and Beta the blue white star to the right. Alpha Centauri is the closest star to our sun at around 4 light years. However, recent measurements with the Hippacaros satellite put the system 300 million kilometres further away than previously thought. Alpha Centauri is actually a triple star, consisting of two sun-like stars and a red dwarf, Proxima centauri, which is the closest of the triple stars to earth. Slightly to the right again, and following a line through the "pointers" brings you to the Southern Cross, 15 handspans above the horizon at about the 12 o'clock position on a clock. A high definition map of Centaurus and Crux is here.

Just to the left of the Southern Cross is the coal sack. This dark area against the glow of the Milky Way represents a large dust cloud and is clearly visible in dark skies. The Jewel box in the Cross is a small open cluster just below Beta Crucis, the southernmost bright star in the Cross at the moment. It is quite beautiful, but requires strong binoculars or a small telescope to see properly.

Returning to Alpha Centauri, a handspan from this star to the right and a handspan up is a small star, a half hand span up (and about a handspan to the right) is a fuzzy star, this is omega Centauri (5139 on the map), a globular cluster of stars which is quite spectacular in good binoculars, and more spectacular than 47 Tucana (see below). Another handspan directly up is Centaurus A, a very radio bright galaxy (5128 on the map). You need a dark night and binoculars (at least 10 x 30) to see it, but it is one of the few galaxies you can see in the southern hemisphere (outside of the small and large Magellanic clouds) without a telescope.

Five handspans straight up from south, and two to the left is the extended nebulosity of the Small Magellanic cloud, one of the dwarf satellite galaxies to the Milky Way. This feature is best viewed on a dark night, away from the city. In this nebulosity is what looks to be a fuzzy star, this is 47 Tucana, a spectacular globular cluster that is very nice through binoculars.

Up four hand spans from due south and two handspans to the right is the Large Magellanic cloud, the largest of the dwarf satellite galaxies. Binoculars will reveal a rather attractive nebula near it, the Tarantula nebula.

Return to Menu
Return to Menu

Sky Maps

How to use the maps

      map viewsky view

Comparison of a section of a skymap showing the Southern Cross (Crux) and pointers, with the appearance of the night sky. The map and sky are for September 1 at 10.00 pm, facing south. Both show approximately 30 degrees (5 handspans) of sky just above the horizon

The maps look a little busy, as they cover all sky from horizon to zenith. The grid lines are navigational helpers; each horizontal or vertical line covers 30 degrees of arc (the gridlines in the illustration show 15 degrees of arc), which is roughly five handspans (where a handspan is the width of your hand, held flat light a "stop" sign at arms length). As you can see from the way the lines bunch up. The map is a little distorted, due to trying to project a spherical surface on a flat surface. The horizon is the lowest curved line on the map (for technical software reasons I can't block things out below the Horizon). Constellations are linked by lines and their names are in italics. Stars are shown as circles of varying size, the bigger the circle the brighter the star. The stars are named with their Bayer letter (eg a - alpha, the brightest star in a constellation, a Crucis is the brightest star in Crux). Variable stars are shown as hollow circles, double stars are marked with a line (eg a, b and g Crucis are all double stars, that look quite beautiful in a small telescope). Clusters and Nebula brighter than magnitude 6.0 are marked as broken circles (eg the Jewel box cluster next to b Crucis above which is best viewed in binoculars or a telescope) and squares respectively. To find Crux for example, locate Crux on the appropriate map (eg see the illustration above). Holding the Map, face either east or west (depending on the map), then use the grid lines to determine how far over and up you should look, then look for the Crux pattern in that part of the Sky.

GIF Maps

A view of the Eastern July sky at 10.00pm AEDST on 1 July can be downloaded here (julsky_e.gif 30 Kb) and a view of the western July sky can be downloaded here (julsky_w.gif 30 Kb). These are more compact files but don't have a lot of resolution.

If you wish to print the GIF maps directly from Netscape you must set the printer in landscape mode and you must set the margins to 0 cm (yes, that's right, 0 cm) or the maps will not print correctly.

PDF Maps

High Resolution PDF files can be obtained for the eastern (110 Kb) and the western (110 Kb) horizon maps.

The Zenith Map (110 Kb) shows you the whole sky. You will need to face the one of the compass points, then hold the map with the appropriate compass point on the map at the bottom of the page.

You will need a PDF viewer such as Adobe Acrobat or GhostView to view and print them. They look slightly worse on-screen than the GIF files, but print much better and come with legends.

Return to Menu

Not available at this time

Return to Menu

Cheers! And good star gazing!


Ian's Astrophotography Gallery

Some of the photographs/images I have taken in recent years of astronomical phenomena that may be of interest.

Return to Menu


Societies: Australian Resources: Australian Planetariums: updated Astronomy for Kids International Resources: Stunning sites: Useful programs:
Return to Menu

Charts, Books and Software for Astronomy

If you would like to have charts available all the time, rather than relying on mine, for between $2-$20 you can pick up a planisphere from a newsagent or bookshop (or for a bit more you can get fancy ones from Australian Geographic, the ABC shop or the other Australian Geographic look alike shop, or the Wilderness Society, or even a binocular/ optical store). The planisphere won't give you position of the planets, so you will need to get the planet rise/set times. These can be found in most serious newspapers (the Age, the Australian, SMH etc. The Australian is probably the best bet for budding amateurs). The combination of planisphere and rise/set times is the best value for beginners though, if you are not too worried about identifying star clusters in your binoculars.

Or, for $19.95 US, you can have the Touring the Universe through Binoculars Atlas which can print observing charts, but has a few annoying quirks. These include having no horizon line, and the planets are shown in the wrong places.

I use a combination of a 1962 star chart, the Australian Astronomy 2013 almanac and SkyMap Pro 11.0 . I highly recommend the Australian Astronomy 2014 almanac. It is more helpful for planetary/comet/asteroidal observations and eclipses than for double stars, clusters galaxies etc, but is an excellent resource for Australian observers and anyone who would like to seriously follow the planets in Australia should have this almanac. It has easy to follow month-by-month summary information, as well as detailed charts, tables and whole sky maps. It is easily navigated. The Almanac is often in big bookstores or optical shops, or email to purchase a copy directly for those outside major population centres. The Australian Astronomy almanac comes out in around November for the following year, and is now approx $28.

Sky and Telescope now also do an Australian version of their magazine.

For detailed chart drawing and timing of events, as well as satellite track predictions I feed the information from the almanac into the $150 AUD SkyMap Pro 11.0 , planetarium program. This is a very handy program which prints maps of every possible orientation and scale. The maps on this page are produced by SkyMap.

A shareware version of SkyMap that runs on windows 3.x, and win95 can be found here this is approximately 640 Kb zipped.

A shareware version of the win95 only version 5.0 is here

Other highly recommended Sky charting packages (win95/98/2000/XP sorry) are:
Cartes du Ciel at (FREE) a bit messy to install but very good.
Stellarium at (FREE) stunning photorealistic program, but requires a grunty PC.
TheSkyVarious packages from $49 US to $249 US
Stary Night various versions from $49 us for the basic pack (10 day trial of the basic pack at up.
Earth Centered Universe $88 AUD (shareware version at
On the other hand a standard Sky Atlas for serious observing (much handier than carting a computer with you) such as Norton's Star Atlas can range from $35 to $90.

In these days of Handheld devices (smart phones and tablets), there is a plethora of sky charting apps you can take into the field with you. I use GoogleSky for android and a cut down version of Stellarium for iPad, my most used handheld app is Heavens Above for Android, for watching Iridium flares and ISS passes. This is one app that has changed my astronomical life. There are many more, many free or less than 1 AUD to dowload. Celestron has a great free planetarium app (although big at 154 Mb) for Android, iPhone and iPad, SkyPortal.

This is not meant to be a product endorsement of any kind (outside of the Australian Astronomy 2014 almanac. For any budding astronomers out there, it is fantastic value and no, I don't have any commercial interest in it, but I did win bronze in their website Olympics).

Return to Menu

Link to the Lab's 'In Space' gateway Link to the Lab's home page
Return to Menu

This page is provided by Ian Musgrave and is © copyright 2014 Ian Musgrave, except the meteor tables which are from the Astronomical Society of New South Wales Inc and the "Southern Sky Watch" logo, as well as any other ABC logo used on this page, is © copyright of the ABC. Sky maps are generated with SkyMap Pro 11.0 .

This page can be used freely for any non-commercial purpose but please attribute it correctly. However, see the disclaimer.

* Email: e-mail Ian with any suggestions
Created: Wednesday, 1 April 1998, 11:22:13 PM
Last Updated: Friday, 30 July 2014, 11:30:13 PM

Locations of visitors to this page
Where are visitors to this page?
(Auto-update daily since 27-August-05)
Return to Menu